On the behavior of solutions in viral dynamical models.
نویسندگان
چکیده
We consider simple mathematical models for the early population dynamics of the human immunodefficiency type 1 virus (HIV-1). Although these systems of differential equations may be solved by numerical methods, few general theoretical results are available due to nonlinearities. We analyze a model whose components are plasma densities of uninfected CD4+ T-cells and infected cells (assumed in this model to be proportional to virion density). In addition to analyzing the nature of the equilibrium points, we show that there are no periodic or limit-cycle solutions. Depending on the values of the parameters, solutions either tend without oscillation to an equilibrium point with zero virion density or to an equilibrium point in which there are a nonzero number of virions. In the latter case the approach to equilibrium may be through damped oscillations or without oscillation.
منابع مشابه
Dynamic Model of Virus Transmission in Plants
In the study of viral diseases in plants, the immune response of the plant plays a basic role. In this paper, a mathematical model based on differential equations system with time delay for the immune response of the plant is introduced. As follows, the dynamical behavior of the model in equilibrium points is investigated. At the end, a plant in two different modes, organic and non- organic is ...
متن کاملInvestigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid
This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملFree Vibration Analysis of Quintic Nonlinear Beams using Equivalent Linearization Method with a Weighted Averaging
In this paper, the equivalent linearization method with a weighted averaging proposed by Anh (2015) is applied to analyze the transverse vibration of quintic nonlinear Euler-Bernoulli beams subjected to axial loads. The proposed method does not require small parameter in the equation which is difficult to be found for nonlinear problems. The approximate solutions are harmonic oscillations, whic...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 73 3 شماره
صفحات -
تاریخ انتشار 2004